Macdonald polynomials at t = q k
نویسنده
چکیده
We investigate the homogeneous symmetric Macdonald polynomials Pλ(X; q, t) for the specialization t = q. We show an identity relying the polynomials Pλ(X; q, q) and Pλ “ 1−q 1−qkX; q, q k ” . As a consequence, we describe an operator whose eigenvalues characterize the polynomials Pλ(X; q, q). Résumé. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques Pλ(X; q, t) pour la spécialisation t = q. En particulier nous montrons une égalité reliant les polynômes Pλ(X; q, q) et Pλ “ 1−q 1−qkX; q, q k ” . Nous en déduisons la description d’un opérateur dont les valeurs propres caractérisent les polynômes Pλ(X; q, q).
منابع مشابه
Factorisation of Macdonald polynomials
1. Macdonald polynomials Macdonald polynomials P λ (x; q, t) are orthogonal symmetric polynomials which are the natural multivariable generalisation of the continuous q-ultraspherical polyno-mials C n (x; β|q) [2] which, in their turn, constitute an important class of hyper-geometric orthogonal polynomials in one variable. Polynomials C n (x; β|q) can be obtained from the general Askey-Wilson p...
متن کاملMacdonald Polynomials and Algebraic Integrability
We construct explicitly (non-polynomial) eigenfunctions of the difference operators by Macdonald in case t = q, k ∈ Z. This leads to a new, more elementary proof of several Macdonald conjectures, first proved by Cherednik. We also establish the algebraic integrability of Macdonald operators at t = q (k ∈ Z), generalizing the result of Etingof and Styrkas. Our approach works uniformly for all ro...
متن کاملRecursion and Explicit Formulas for Particular N-Variable Knop-Sahi and Macdonald Polynomials
Knop and Sahi simultaneously introduced a family of non-homogeneous, non-symmetric polynomials, Gα(x; q, t). The top homogeneous components of these polynomials are the non-symmetric Macdonald polynomials, Eα(x; q, t). An appropriate Hecke algebra symmetrization of Eα yields the Macdonald polynomials, Pλ(x; q, t). A search for explicit formulas for the polynomials Gα(x; q, t) led to the main re...
متن کامل. C O ] 3 1 M ar 1 99 9 Formulas for special cases of Macdonald polynomials Mike
An explicit expansion for the Macdonald polynomials of the form H (32 a 1 b) [X; q, t] and H (41 k) [X; q, t] in terms of Hall-Littlewood symmetric functions is presented. The expansion gives a proof of a symmetric function operator that adds a row of size 3 to Macdonald polynomials of the form H (2 a 1 b) [X; q, t] and another operator that adds a row of size 4 to Macdonald polynomials of only...
متن کاملar X iv : m at h / 98 06 15 1 v 1 [ m at h . Q A ] 2 8 Ju n 19 98 CANONICAL BASIS AND MACDONALD POLYNOMIALS
In the basic representation of Uq(sl 2) realized via the algebra of symmetric functions we compare the canonical basis with the basis of Macdon-ald polynomials with t = q 2. We show that the Macdonald polynomials are invariant with respect to the bar involution defined abstractly on the representations of quantum groups. We also prove that the Macdonald scalar product coincides with the abstrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008